
the concrete domain of values and operations in a programming language to an abstract
domain, typically with values ordered in a lattice and abstracted operations defined
through lattice operations (e.g., meet and join). Abstract interpretation is often applied
through fixed mappings for various types of analysis used in compiler optimization,
such as dead code detection.

In this ongoing research, we are applying abstract interpretation through dynamical-
ly determined mappings to reduce the state space for model-checking. To date, we have
only considered mappings based on explicit values: discrete enumerated values and
convex intervals over the real numbers. The method is similar to WP-based program
slicing: starting from an operation constrained by a flight rule, the state space is merged
into one equivalence class. Walking backwards through the code from this operation,
this one equivalence class is then recursively partitioned into distinct classes according
to those states satisfying the weakest precondition for each statement. At worst, the
original state space is regenerated.

8 Summary

Verification technology is important for next generation of autonomous spacecraft.
This paper has described ongoing work in applying and extending formal methods tech-
niques, specifically model-checking, to the verification of an AI-based autonomy archi-
tecture. The paper presented examples of the core services provided by the DS-1 remote
agent executive and task programs executed by the executive. Verification and debug-
ging of the core services protocol requirements through model-checking were de-
scribed. The paper then described on-going research to automate the abstraction of task
programs in order to enable model-checking of flight rules and other requirements.
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The rule for conditionals is defined on the following pattern:
Slice({code-sequence; ifP thenthen-statement elseelse-statement}, Q}

Let then-WP =WP(then-statment, Q)
Let else-WP =WP(else-statment, Q)

Let reduced-then-WP =WPR(P,then-WP)
Let reduced-else-WP =WPR(not(P),else-WP)

Note that when the conditionP impliesthen-WP,the IDLE statement can be substi-
tuted forthen-statement.In other words, thethen-statement is executed only in a context
where it will not generate an error trace. Definereduced-then-statement as IDLE when
P implies then-WP, otherwise it is the same asthen-statement.Similarly, when not(P)
implieselse-WP,the IDLE statement can be substituted forelse-statement.Define re-
duced-else-statement accordingly.

The rule for slicing conditionals can now be defined:
Slice({code-sequence; ifP thenthen-statement elseelse-statement}, Q} ->

{Slice(code-sequence, (P andreduced-then-WP)or (not(P) andreduced-else-WP)))
                                         ; ifP thenreduced-then-statement elsereduced-else-statement}

Note that the weakest precondition for the conditional is composed of reduced weak-
est preconditions for the then-statement and the else-statement.

7.2 Future Research on Abstraction-based Verification

Future work will include a full calculus for WP-slicing of ESL constructs. Many of
the ESL constructs such aswith-maintained-propertiesgreatly simplify WP-slicing. In
other words, the API provided by core executive services is designed to simplify ensur-
ing that requirements and constraints for task program execution are met. For example,
with-maintained-propertiesis specified to guarantee that properties are achieved and
maintained throughout the execution of the body. The weakest precondition of the body
for a state-predicate implied by these properties is simplytrue.

Another method under investigation for abstracting ESL task programs is equiva-
lence-based abstract interpretation.WP-program slicing can substantially reduce the
size of programs. However, it does not reduce the size of the full state space, defined as
the product of the number of values that can be assigned to each program variable. By
reducing some state transitions to IDLE, WP-program slicing reduces the number of
reachable states, defined as the subset of the state space that can be reached through se-
quences of valid transitions from the initial state. Nonetheless, non-symbolic model-
checking is required to enumerate all the possible reachable values for each program
variable, even if many of these values result in equivalent traces with respect to an in-
variant or temporal property.

The state space can be greatly reduced by merging equivalent values, and redefining
the operations according to the equivalence classes. Mapping values to equivalence
classes and operations to abstracted operations over the equivalence classes is a type of
abstract interpretation, [3]. Abstract interpretation is defined as a homomorphism from



7.1 WP-Based Program Slicing

Program slicing [4,5] is a technique to extract a partial program that is equivalent to an
original program over a subset of the program variables. The input to a traditional slic-
ing algorithm is a program and a designated subset of variables, the output of the slicing
algorithm is a partial program that for every program execution has identical values as-
signed to the designated subset of variables upon program termination. The key idea of
slicing algorithms is to work backwards from the program end-point, keeping state-
ments that have an effect on the designated variables and removing statements that have
no effect. As the algorithm works backwards over the program statements, additional
variables might be added to the designated set if they have occur in expressions which
modify the designated set.

The concept of program slicing can be extended to abstract ESL programs for the
purpose of model checking. However, instead of slicing with respect to variables, the
programs are sliced with respect to state predicates [6], starting from a statement which
contains the operation(s) which are required to only be executed in particular states. In
other words, the programs are sliced with respect to a never property of the form de-
scribed in section 6. The partial program that is generated from such a never property
has the following guarantee: its error traces for the never property are in direct corre-
spondence to the error traces of the original program. This is called WP-program slic-
ing, as the algorithm is defined using Dijkstra’s weakest-precondition calculus. In the
example above, the slicing begins at the statement which changes the ACS to TVC-
mode.

Two rules for this slicing calculus are described.Slicetakes a code-sequence termi-
nated by a statement, and a state predicate, and returns a reduced code-sequence. It de-
termines where it can substitute the IDLE statement without affecting error traces by
calculating when a statement “passes through” a state predicate. This occurs when the
weakest precondition is the same as the state predicate. The IDLE statements can later
be removed.

The slicing rule for straight-line sequences is:

Slice({code-sequence ; statement} ,  state-predicate)  ->
If WP(statement, state-predicate) = state-predicate
    then {Slice(code-sequence,state-predicate); IDLE}
    else  {Slice(code-sequence,WP(state-predicate,statement)) ; statement}

The rule states that IDLE can be substituted for a statement if the statement has no
effect on the state predicate. Otherwise, the weakest precondition of the state-predicate
is substituted for the state-predicate and slicing continues backwards. A more elaborate
calculus would allow substituting a simpler statement that had the same weakest pre-
condition.

The rule for conditionals requires the definition of a weakest predicate reduction:

Definition   R is apredicate reduction of Q by P  iff R & P => Q

Definition R is aweakest predicate reduction (WPR) of Q by P iff for any S which
                       is a predicate reduction of Q by P, S=> R



call change-acs-mode.
to-achieve-IPS-THRUSTING  (level)

 if  (ips-thrusting-state-p or ips-standby-state-p)
    then do
        check-type( level, ips-thrust-level-type);
        command-with-mir-confirmation(send_fsc_ips_set_thrust_level(level));
        wait-for(memory-event(ips-state = steady-state and thrust-level = level));

             with-guardian(warp-safe (monitor(ips-thrust-duration-achieved))),
                                                                     change-acs-mode(tvc_mode));
        od
        else do
              achieve (ips-standby-state);
              achieve (ips-thrusting(level));
        od

The procedure first checks that the IPS is either in a thrusting state or a standby state. If
neither (the else clause), it first achieves a standby state, and then tries to achieve the
thrusting level. Otherwise (the then clause), it performs a sequence of steps that do not
themselves change whether the EGA is turned on. These commands instead set-up and
monitor the thrust-level given as parameter. Finally, the ACS is switched to TVC-mode.

Note that this procedure does not itself guarantee that the EGA is turned on when the
ACS is switched to TVC-mode. (In fact, achieving IPS standby-mode turns the EGA
off.) Thus the existence of a possible error trace for the flight rule is not excluded by the
code in this procedure, but rather depends on the context in which this procedure is
called. However, the program is more complicated than need be to determine whether
or not there is an error trace. The superfluous steps can greatly increase the number of
interleavings during model-checking.

7 Abstraction-based Verification

Model-checking is an attractive method for verifying flight rules, specifically that
state constraints (invariants) are satisfied at those points in the code where messages are
broadcast. However, the executive task descriptions are moderately complex (tens to
hundreds of pages), and have a large state space. The code described in section 6 is only
a small part of the overall program to control the IPS. This makes it computationally
infeasible as a general methodology to run a model-checker on a direct translation of
the ESL programs. But for each flight rule, only a small portion of the program is rele-
vant. However, given the number of flight rules, manually abstracting a model of the
task programs for each flight rule is not cost effective. Thus we are developing automat-
ed abstraction methods for generating reduced models. As applied to the code described
in section 6, the abstraction methods would yield the simplified program below with re-
spect to the EGA constraint:

to-achieve-IPS-THRUSTING  (level)
 if  (ips-thrusting-state-p or ips-standby-state-p)
    then do

            change-acs-mode(tvc_mode);
        od
        else do
              achieve (ips-standby-state);
              achieve (ips-thrusting(level));
        od



eliminated in the design of the next version of the executive by changing where the
property lock daemon resides and when it is invoked.

This section has overviewed aspects of the analytic verification and debugging of the
DS-1 remote agent executive. It demonstrates that formal methods technology, specif-
ically model-checking, which has been successfully applied in the past to verification
and debugging of  digital hardware, communication protocols, and operating system
protocols; can be extended to the verification and debugging of AI-based concurrent
systems. However, it has not described the manual effort in hand translating the Lisp
code to the language of a model-checker (e.g., PROMELA), the much more considerable
effort in abstracting the model so it is computationally tractable even for a large work-
station. This required manual effort has made it somewhat difficult to stay current with
the executive design and development team working under the rapid spiral model.
Nonetheless, we have made a contribution to the overall verification effort for the DS-
1 remote agent.

6 Executive Task Programs

This section and the next section together describe research towards automating the ab-
straction of AI programs for computationally tractable model-checking. The context for
this research is verification of the task-specific executive programs, which run on top
of the API provided by the core executive services.

The task-specific programs need to be verified both against the goals they are meant
to achieve as well as the constraints they cannot violate while executing. A subclass of
these constraints areflight rules which are formulated by experts to guide the safe op-
eration of the spacecraft. One class of flight rules have the form that a class of events
never occur in states satisfying particular predicates:

[never] state-predicate -> event
In other words, the event should only occur in states that satisfy the negation of the

state-predicate. An example of such a flight rule concerns the requirements for the
spacecraft to have directional control over the propulsion. The Engine Gimbal Actuator
(EGA) must be activated to provide directional control over the thrust vector. Thus one
implication of the requirement is the following flight rule: the EGA must be on when-
ever the attitude control system (ACS) is in Thrust Vector Control (TVC) mode. This
can be formulated as two rules, which together are equivalent to the constraint that a
time interval in which the ACS is in TVC mode is contained by a time interval when
the EGA is on:

[never] EGA-off -> turn-on-TVC-mode
[never] TVC-mode-on -> turn-off-EGA

The executive controls devices such as the EGA and the ACS by broadcasting mes-
sages to processes that subscribe (listen) to particular classes of messages, these pro-
cesses implement the low-level device control protocols. Thus from the viewpoint of
the task-specific executive programs, flight rules such as the one above are equivalent
to predicates on the state in which particular messages are allowed to be sent by the ex-
ecutive.

The rest of this section describes a procedure within the executive task program that
achieves a thrust level of the ion propulsion system. It contains a call to change the ACS
into TVC-mode. It is a simplified version of the procedure as it existed in the spring of
1997. The part of the procedure which sends out a message to the ACS is the subroutine



 achieve-lock-properties (lock)
     p = property-lock-property(lock);
     if  owner(lock) =  $this-task then do
          achieve p;
          property-lock-achieved?(lock) = TRUE;
          od
      else wait-for(p);

An error trace arises in the SPIN model for the following requirement, which is part
of requirement 4 listed in the previous section. In contrast to the previous requirements,
which were formulated as invariants, this requirement is formulated as a temporal prop-
erty:

  If a task relies on some property to hold, and the database is modified
  such that it no longer holds, then the task will eventually terminate,
  either by itself or by an abort from the daemon.

The error trace is summarized by the following sequence of events which refer to the
interaction between the environment, the daemon, theachieve-lock-properties routine,
and multiple tasks:

1. A task callssnarf-property-locks, becomes the owner of the lock, and then calls
achieve-lock-properties.In the call of the latter, first achieve is called (because the
task is the owner of the lock). After this succeeds, but before the achieved-value is
set to TRUE, the task is suspended (put to sleep) by the excutive.That is, the property
has been achieved, but the achieved-field in the property lock has not yet been set to
TRUE. (A second task is activated by the executive and starts to run).

2. The database is now modified by the environment in such a way that it becomes in-
consistent with the property lock just created by the first task. This causes a memory
event.

3. The daemon is awakened. The daemon starts looking for an inconsistency, but finds
none since the achieved-field has not been set yet. Specifically, check-locks signals
an inconsistency only if the achieved-field is set to TRUE. Hence, the daemon dis-
covers nothing and goes back to sleep.

4. The first task is awakened and finishes executing theachieve-lock-properties.It as-
signs TRUE to the achieved-field of the lock, and continues execution as if every-
thing is consistent.

5. Unless another memory-event or snarf-event occurs, the daemon remains asleep. The
task is not stopped, and continues executing (if it is an infinite loop, perhaps indefi-
nitely) even though properties it depends on are not valid.

This error trace could be eliminated through a critical region in theachieve-lock-
properties routine. However, it also reinforces a known design flaw of the spring 1997
implementation of the executive: there can be a significant time lag between a property
being violated and a task being informed of the violation. Prior to model-checking, it
was not known that this time lag could be indefinite. This significant time lag is being



dled by recovery procedures. However, after the body is executed, thewith-maintained-
propertyconstruct exits theunwind-protect wrapper and executes code to release the
locks. If after theunwind-protect wrapper is exited a property violation occurs, and then
the daemon which monitors property violations wakes up, it will signal an error. Be-
cause this error occurs outside the dynamic context of anunwind-protect,the error falls
through and causes the task to be aborted - whether or not the release locks code has
been fully executed.

This error trace was communicated to the development team, resulting in experi-
ments with a critical section being placed in thewith-maintained-propertyconstruct
around the code to release locks. This prevents any other thread from executing (includ-
ing the daemon monitoring property violations) when any instance ofwith-maintained-
properties enters the release-locks section of code. This still leaves an even more un-
likely (by over an order of magnitude) error trace that was found through model-check-
ing: a property violation occurs exactly at the point where theunwind-protect wrapper
is exited and the gap before the critical section for release locks is entered. The best
means of handling this unlikely error trace is not obvious, because it is necessary to be
conservative in creating critical sections of code. Excluding other threads from execut-
ing can itself lead to timing bugs. This brief overview of this error trace illustrates the
nature of the interactions between the analytic verification team and the executive de-
velopment team, and also the subtle nature of concurrency bugs.

An even more subtle error trace concerns the interaction of the internal operation of
the daemon which monitors the properties and the code for achieving property locks.
Simplified versions of the Lisp code for both, circa the spring of 1997, are given below
in Algol-like notation, preceded by explanations. The simplified versions are sufficient
for understanding the nature of the error trace, and for understanding how the verifica-
tion technology is applied to AI programming constructs.

The maintain-properties-daemon is an infinite loop, and is normally sleeping. First
it checks the locks data structure; if there is an inconsistency with the database for the
actual property values, it invokes recovery procedures. Then it determines whether
there has been any new memory-event occurrences (induced by an external event) or
snarf-event occurrences (induced by a task snarfing a property). If not, it goes back to
sleep until a memory-event or snarf-event occurs. Hence, if no event occurs for a while,
then the damon will not perform check-locks.

 maintain-properties-daemon
  loop-forever do
          if  check-locks
              do-automatic-recovery;
          if  not(changed? (memory-event-count + pl-snarf-event-count))
              then wait-for(memory-event or snarf-event);
    od

The achieve-lock-property routine is called within the dynamic scope of a task,
which is the value of $this-task. This routine is called after a task successfully snarfs a
property-lock; the routine is called with the lock as a parameter. If the task is the owner,
then it first achieves the property and then sets the achieved-field to boolean TRUE. If
the task is not the owner of the lock, it waits for the property to be achieved.



tors in that they explore all possible traces, in other words all realizable paths through
the reachability graph. They also enable checking much richer concurrency properties
than is typical of simulators. Some model checkers are similar to theorem-provers in
that they manipulate symbolic descriptions of the transition relation. However, model-
checkers do not perform induction, which typically needs to be guided manually in real-
world verification proofs. Trading off from this deficiency, they are completely auto-
matic, and thus more practical for verification in a spiral development process.

Different model checkers provide different languages for defining the interacting fi-
nite state machines. The PROMELA language is a C-like language with facilities for cre-
ating processes and for interprocess communication through buffered channels. SPIN
compiles a PROMELA model into a C program which is then run to find error traces. To
formulate the model of the executive core services in PROMELA, a number of trade-offs
had to be made. For example, the spring 1997 release of  PROMELA did not directly sup-
port procedures. Modeling procedure calls as process invocations led to state explo-
sions, a subsequent attempt at modeling procedure calls as macro calls avoided the state
explosion but required careful separation of variable names. Neither the precise details
of our abstracted PROMELA model nor the various trade-offs are enumerated in this pa-
per. However, the reader should be aware that formulating computationally tractable
models of complex systems requires expertise, artistry, and experimentation.1

This section focuses on two subtle bugs that were found regarding the protocol re-
quirements described in section 4. These bugs were first found through error traces of
our abstracted PROMELA model and then confirmed in the executive Lisp code. The de-
signers of the executive believe these bugs would not have been detected through means
other than formal verification. Empirical testing would not have uncovered these bugs
because they arise only in a multithreaded environment, and only in unusual circum-
stances that are unlikely to arise during testing. Model-checking is able to find these
bugs because it considers all possible interleavings of concurrent processes.

We should first note that the executive has performed well under empirical testing,
and moreover we have been able to analytically verify that the implementation satisfies
various requirements. For example, the following requirements have been verified, in
the abstracted PROMELA model, of the property protocols described in section 4:

1. If a property is snarfed by a task, it can only be snarfed by another task if the
property values are compatible (requirement 1b).

2. When a task terminates normally, it releases all locks (requirement 5, normal termi-
nation).

The verification of these requirements was achieved by placing invariants in the
model at the appropriate locations, and running the model over all interleavings to dem-
onstrate that there are no traces where the invariants are violated.

The subtle bugs which have been found through model-checking concern traces in
abnormal situations, for example, where a property is violated in a situation that was not
considered by the executive design team. The first bug is demonstrated by an error trace
where a task may abort without releasing its property locks. Thewith-maintained-prop-
erty construct uses the Lisp constructunwind-protect to provide a wrapper around the
execution of the body. This ensures that errors signalled during the execution of the
body (e.g., an error signalled because a locked property is violated) are caught and han-

1. The authors thank Gerard Holzmann, the creator of SPIN, for his advise and help.



  1b. Some other task already owns lock, and the values that the two tasks want the prop-
erty to have are compatible. In this case the task successfully subscribes to the lock
but does not become the lock’s owner - it is a secondary subscriber. It alsosnarfsthe
property.

  1c. Some other task is subscribing to the lock and the values are incompatible. In this
case the subscription FAILS.

2. The owner of a lock, after successfully subscribing, attempts to actually make the
property true by calling theachieve method on the property. All secondary subscrib-
ers wait for the property to be achieved by the owner. If the owner’s attempt to
achieve the property fails, then all of the lock’s subscribersfail .

3. Once a lock property has been achieved, the lock’s subscribers, which were waiting
for the owner to achieve the property, are signaled and continue to run. The body of
these tasks are executed.

4. If a locked property becomes false (is violated) during execution of a body (through
events exogenous to the executive, such as device failures), signal this loss, suspend
execution of the body, and attempt to recover the property. Maintained property vi-
olations are detected by a daemon. This daemon will attempt to restore or recover
violated properties, using recovery actions that are either explicitly stated in the task
definition, or default recovery actions that can involve invocation of MIR. If the re-
covery action is not successful, then all tasks which have snarfed the property are
aborted.

5. When a task terminates, either normally or aborted, it unsubscribes to all properties
it has snarfed. If the owner of a locked property unsubscribes to the property, then
ownership is passed to the next task subscribing to the property. If there are no fur-
ther tasks subscribing to the property, then the lock on the property is released.

The next section describes a simple error trace found through analytic verification that
violates requirement 5 and then a more complex error trace that violates requirement 4.

5 Analytic Verification of Executive Core Services

This section describes ongoing work to verify and debug key components of the core
services of the executive. An abstracted model of the Lisp code was manually devel-
oped of the implementation for locking, snarfing, and releasing properties. This model
includes thewith-maintained-properties construct described in the previous section.
The model was written in PROMELA, the language for the model-checker SPIN [2].
Even this highly abstracted model was at the limits of computational complexity for
large workstations (i.e., a workstation with 268MB of memory).

Model-checking is a formal methods technique for verifying and debugging concur-
rent or real-time systems modeled as interacting finite state machines. Given a model
and a property, a model-checker searches fortraces of the model that violate the prop-
erty. Properties can be invariants, temporal properties (i.e., defined through model op-
erators such aseventually), or in the case of real-time model-checkers, metric time
constraints defined through linear relations. A trace is an interleaved sequence of states
(or dually, transitions) of the finite state machines. Model checkers differ from simula-



clude as a subset those of an operating system for managing a queue of jobs, which must
be assigned resources and synchronized according to their concurrency constraints. The
executive keeps an agenda of tasks (jobs) which are broken down into sequences of
commands; the executive activates and suspends these tasks. The resources are typical-
ly states of a device, more generally, resources areproperties.A property is any value
that is controlled and monitored. The executive differs from a standard operating sys-
tem in at least two respects: the extensive support for monitoring and recovering from
property violations - leading to robust execution, and the high level of abstraction pro-
vided by goal-oriented AI constructs.

4.1 Maintaining Properties during Task Execution

This subsection describes the architecture implemented in the executive for assigning
and monitoring properties required by task programs for successful execution. The an-
alytic verification and debugging of this architecture is described in the next section.
The primitive construct that invokes these services is the (with-maintained-properties
prop body) construct (implemented as a Lisp macro), which takes as parameters a set
of properties and the body of a task program. The specification of this construct is that
it guarantees the properties while the body is executing. By having the properties man-
aged in this manner, the task programs can focus on sequencing activities without wor-
rying about maintaining and monitoring the values of the maintained properties.

Further constructs are built using thewith-maintained-properties construct. For ex-
ample, the (with-selected-deviceclass (do-activity)) construct selects a device of the
class, achieves its ready-state, and then locks the properties of that ready-state and
maintains them with the assistance of MIR while it does the activity. This ESL construct
is used within the DS-1 executive to maintain properties of devices, which are physical
objects on the spacecraft. There are classes of devices which are defined to have various
properties. A task can select a device and execute with the knowledge that the desired
state of this device is being maintained by the system. Further constructs built using the
with-maintained-properties construct are used to maintain states during sequencing.
For example, thrusting in the ion propulsion system is controlled by creating a thrusting
state predicate and associating it with the property IPS-THRUSTING.

 The basic architecture in whichwith-maintained-propertiesoperates is a collection
of concurrent tasks that require specific values of certain properties in order to execute
correctly. If a property value become false, then the associated tasks should be suspend-
ed while action is taken to re-achieve the property. Tasks must also be coordinated so
they do not require conflicting values of properties. The following are some of the basic
protocol requirements for this architecture whose analytic verification and debugging is
described in section 5:

1. A task wanting a property to have a specific value subscribes to the property. To co-
ordinate multiple tasks wanting property values, the properties are locked during
subscription. Property locks are used to coordinate tasks so that they do not try to
achieve different values for a single property at the same time. Mutually exclusive
access to the locks is guaranteed by placing the code for locking within a critical sec-
tion. The subscription process can have three outcomes for a task:

  1a. No other task is subscribing to that lock, in which case the subscription is success-
ful, this task becomes the owner of the lock, andsnarfs the property.



all feedback loops above the level of servo-mechanisms go through ground manual con-
trol, with human-in-the-loop verification. Verification and validation is a major obsta-
cle in accepting more autonomous architectures.

As an adjunct to the regular testing effort for DS-1, an effort among several NASA
centers to apply formal methods to verifying and debugging DS-1 is being pursued. In
previous NASA formal method studies the software being analyzed was developed in a
waterfall process, with relatively long phases for requirements and design (months to
years). This allowed plenty of time for formal methods practitioners to exercise their
analysis tools and feedback their results to requirements analysts. In contrast, the DS-1
software has been developed through the spiral model [1]. The spiral model is an itera-
tive software development process with four or more distinct phases for each turn of the
spiral: requirements, design, coding, and testing. In contrast to the one-shot waterfall
model, the spiral model provides iterative feedback on requirements and design through
testing and validation of earlier turns of the spiral. It is a process well-suited to devel-
oping novel architectures where there is substantial initial uncertainty on requirements
and designs. However, it results in highly time-compressed phases. In the case of DS-
1, each turn of the spiral has lasted two to three months, and each phase of each spiral
lasts just a matter of weeks. This presents a substantial challenge to formal methods ef-
forts, stressing automation over labor-intensive manual methods.

The NASA-wide effort is being called analytic verification, to stress its complement-
ing empirical validation efforts and to highlight its foundation in mathematical ap-
proaches to software engineering. We believe this name is also more informative to the
spacecraft engineers and mission planners than the name ‘formal methods’. As part of
this analytic verification effort, our team at NASA Ames is pursuing formal verification
of part of the remote agent. The technology we are developing stresses model-checking
over interactive theorem-proving, because the former is much more automated than the
latter. The long-term goal of our effort is to make our technology directly usable by the
design and development team, as low-overhead tools. In the interim, we are our own
users, providing feedback from our efforts to the design and development team.

4 Executive Core Services

The executive subsystem of the remote agent is conceptually composed of two layers:
a set of core services that implement a robust operating system for executing concurrent
tasks, and a set of mission-specific task programs. The language in which both layers
are written is an extension of Lisp called the Executive Sequencing Language (ESL),
principally authored by Eran Gatt of JPL. ESL is defined through a set of Lisp macros.
ESL code operates in a multi-threaded Lisp.

In this section we overview one aspect of the executive that will serve as examples
of the formal verification techniques described in section 5: thewith-maintained-prop-
erties construct in the core executive system. Section 6 describes an example task pro-
gram for thrusting with the ion propulsion system, which will serve as examples for the
abstraction techniques described in subsequent sections.

The services provided by the core executive system, such as those provided by the
with-maintained-propertiesconstruct described below, provide an API (application
programming interface) for defining task programs that achieve diverse goals such as
acquiring images and changing trajectory. These programs are executed concurrently in
order to achieve the token nets generated by the planner. For the purposes of this paper,
assume that each token in the token net corresponds to the invocation of a task program
in the executive, with the appropriate parameters. The core services of the executive in-



launch weight of a deep-space robotic spacecraft. This alone can save hundreds of mil-
lions of dollars by reducing the size of the required launch rocket; for example, from a
Space Shuttle to a Titan rocket to a Delta rocket. Personnel costs are the second major
factor in operations costs, with missions such as Voyager requiring hundreds of non-
science personnel at the peak of encounters to monitor the health of spacecraft sub-
systems, sequence the commands executed by the spacecraft, and navigate.

2 Deep-Space 1 and AI-Based Autonomy

As one of its objectives, the New Millennium program is seeking to reduce non-sci-
ence personnel costs by an order of magnitude through automation technology. The ul-
timate objective of the automation technology is spacecraft autonomy: deep-space
robotic spacecraft that navigate themselves, monitor their own health, monitor the sta-
tus of mission goals, and take appropriate corrective actions. Autonomous spacecraft
will be commanded at the level of mission goals rather than traditional spacecraft se-
quences, the latter being roughly equivalent to macro-assembler programs for embed-
ded systems. This will be accomplished by extending the feedback loops which on
today’s spacecraft operate only at the low level of servo-mechanisms (e.g., maintaining
attitude control) to feedback loops which operate all the way up to science goals. In ad-
dition to greatly reducing operations costs, autonomous spacecraft will also enable new
kinds of missions that cannot be accomplished through light-time delayed remote con-
trol, such as comet landings.

The first New Millennium mission is Deep-Space 1 (DS-1), which currently includes
plans for an asteroid rendezvous, a Mars fly-by, and a comet fly-by. Critical technology
being tested includes an ion propulsion system (IPS) and on-board optical navigation.
Another experiment is the flight-testing an AI-based control system called Remote
Agent (RA), the first towards the goal of spacecraft autonomy. The remote agent has
three subsystems: a planner which decomposes goals into task-nets and then sequences
tasks along a time-line according to precedence constraints and resource constraints; an
executive which concurrently executes these tasks; and a next-generation fault detec-
tion and recovery system called MIR. The executive subsystem and MIR provide the
feedback loops at higher levels. The executive subsystem combines features of multi-
threaded operating systems with AI languages based on sub-goaling, such as Prolog and
MRS. This paper describes research aimed at formal verification of the executive sub-
system.

3 Analytic Verification Effort

A major concern for spacecraft engineers and mission planners is verification and
validation of advanced software architectures such as the remote agent. Traditional ap-
proaches to verification and validation include extensive testing and manual review.
Furthermore, traditional spacecraftsequences- that is, command sequences to control
a spacecraft - are time-stamped, straight-line programs that are reviewed by engineering
teams from each spacecraft subsystem. For example, the thermal team will review a se-
quence to check for overheating, the power system team will review a sequence to
check for safety of the electrical system. Each command is time-stamped to execute at
a particular time, down to millisecond precision. More flexible methods for command-
ing a spacecraft are controversial - even minimal extensions such asconditional se-
quencing, where the execution timing of a command depends on the spacecraft’s
environment. An example would be a command to wait until the spacecraft comes out
of the shadow of a planet before turning the solar panels towards the sun. Traditionally,
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Abstract. NASA is developing technology for the next generation of deep-space
robotic spacecraft, with the aim of enabling new types of missions and radically
reducing costs. One technology under development is Autonomy: highly capable
spacecraft that perform significant scientific missions with little or no command-
ing and monitoring from Earth. Artificial Intelligence provides a basis for auton-
omy technology, but raises issues of verification and validation outside the scope
of empirical testing technology for conventionally commanded spacecraft. This
paper describes research towards extending formal methods verification tech-
niques for the mathematical verification of AI systems controlling deep-space
spacecraft. This paper first overviews a planned space mission called DS-1 which
includes an AI-based autonomy experiment. It then describes part of this AI sys-
tem called the executive, which includes an ‘intelligent’ operating system based
on goal-oriented constructs. The paper then describes focused research on apply-
ing and extending model-checking technology for verifying both the core servic-
es of the executive and the concurrent task programs run by the executive.

1 NASA’s New Millennium Program

The successful landing of Mars Pathfinder on Independence day (July 4, 1997) sig-
nalled a new era in man’s exploration of the solar system: faster, better, and cheaper.
The Mars Pathfinder project was completed in four years, delivered widely sampled
geological data from a mobile rover and cost just $250 million (1997) dollars. In con-
trast, the two Viking missions of twenty years ago took over eight years to develop, de-
livered data from fixed landers and orbiters, and cost over $3 billion (1997) dollars. The
Mars pathfinder project took advantage of off-the-shelf technology to reduce develop-
ment costs.

NASA is preparing for an order-of-magnitude expanded space exploration program
in the next decade within the constraints of a flat-lined budget. One key aspect of this
plan is the New Millennium program: a series of technology validation flights whose
objective is to accelerate the flight-qualification of new spacecraft technology. For ex-
ample, new generations of radiation-hardened microprocessors, based on commercial
designs, will be flight-qualified in New Millennium missions. Up to now the functional
performance of space-qualified hardware has often lagged a decade or more behind
commercial hardware. New Millennium will greatly accelerate the space-hardening and
space qualification of new technology. This will reduce development costs for subse-
quent science-oriented missions and enhance the technology base for these missions.
The New Millennium program is also aimed towards decreasing operations costs while
enhancing science return.

Operations costs are largely determined by two factors: launch weight and person-
nel. Microelectronics and other miniaturization technology can greatly reduce the
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